Pulley Optimization for a Walking-Engine-Actuated Active Ankle-Foot Orthosis

ثبت نشده
چکیده

Active orthotic devices for joint articulation have a vast number of applications that could benefit many people. Examples include joint articulation for people suffering from disabilities, increased load carrying capacity and walking distance for humans, and gait training. The main goal of this research is to help people with disabilities regain natural walking ability by replicating normal walking gait through the use of an active ankle-foot orthosis (AAFO). This research investigates the optimization of a pulley system for the primary actuator of an AAFO utilizing a high-efficiency pneumatic “Walking Engine.” In order to accurately replicate a healthy human gait, the AAFO device had to accurately reproduce the moment applied to the ankle during the gait cycle. The AAFO’s internal-combustion (IC) engine was characterized using a dual-combustion (limitedpressure) gas-power-cycle model. With the dual-combustion model, both a theoretical pressurevolume diagram and the thermodynamic engine efficiency were calculated. Using the calculated pressure output of the IC engine, the pulley system was optimized to best match the ankle moment of a healthy human gait, which was obtained from David Winter’s Biomechanics and Motor Control of Human Movement. The optimized pulley geometry is very complicated and additional research is necessary to utilize its design. The results of this research provide insight for the future development of untethered, lightweight, efficient AAFO devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Modified Floor Reaction Ankle Foot Orthoses on Walking Abilities in Children with Cerebral Palsy

Objectives: This study was designed to evaluate the effectiveness of a modified floor reaction ankle foot orthosis (FRAFO) design on gait performance in children with cerebral palsy. Methods: Eight children with cerebral palsy wore a modified FRAFO bilaterally for six weeks. Motion analysis was used to assess the immediate effectiveness of the orthosis on improving gait and also following si...

متن کامل

The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

BACKGROUND A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. OBJECTIVE The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-an...

متن کامل

The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.

BACKGROUND Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. OBJECTIVE The purpose of this study was to determine differences of the powered ...

متن کامل

Comparing the Effects of Flexible and Rigid Ankle-Foot Orthoses on Balance/Walking Performance in Individuals With Multiple Sclerosis

Background: Ankle-Foot orthoses are used to minimize the impact of weakness in ankle dorsiflexion muscles. The study on different orthotic types defines the optimal design, which effectively improves the users’ mobility. This study investigated the potential benefits and risks of a Dictus-band (flexible orthotic), compared with a thermoplastic (fixed) ankle-foot orthosis on the mobility of indi...

متن کامل

Optimization of Ankle-Foot Prosthesis with Active Alignment by Passive Elements

Today, often ankle’s active prosthesis is used for transtibial amputated people’s walking, because these prostheses have some advantages such as increasing power and decreasing metabolism. In most of active prosthesis in order to create a movement or increase the force at the push-off, electrical actuators are used like a motor. In cases where a higher-power motor is necessary, the capacity, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016